Goal: 1) To evaluate algebraic expressions 2) To simplify algebraic expressions

Vocabulary and Key Concepts

Properties for Simplifying Algebraic Ex	pressions
Let a, b , and c represent real numbers.	
Definition of	Definition of
a-b=a+(-b)	$a \div b = \frac{a}{b} = a \cdot \frac{1}{b}, b \neq 0$
Distributive Property for	
a(b-c) = ab - ac	
Multiplication by 0	Multiplication by -1
$\cdot a = 0$	$\cdot a = -a$
Opposite of a	Opposite of a
-(a+b) = -a + (-b)	-(a-b)=b-a
Opposite of a	Opposite of an
$-(ab) = -a \cdot b = a \cdot (-b)$	-(-a)=a
A variable is	
An algebraic expression or a variable ex-	pression is an expression that contains
To evaluate an expression,	
A term is	
A coefficient is	

Examples

- **1** Evaluating an Expression with Exponents Evaluate $(k-18)^2 4k$ for k=6.
- **Elections** The expression $-0.08y^2 + 3y$ models the percent increase of voters in a town from 1990 to 2000. In the expression, y represents the number of years since 1990. Find the approximate percent of increase of voters by 1998. Since $1998 1990 = \boxed{}$, y = 8 represents the year 1998.

1-3 Algebraic Expressions

© Combining Like Terms Simplify 2h - 3k + 7(2h - 3k) by combining like terms.

Quick Check

1. Evaluate each expression for c = -3 and d = 5.

a. $c^2 - d^2$

b.
$$c(3-d)-c^2$$

c. $-d^2 - 4(d-2c)$

- **2. a.** Assume that the model in Example 2 holds for future years. What percent of the eligible voters will vote in 2012? In 2020?
- **b. Critical Thinking** Give some reasons that the model may not hold in future years.

3. Simplify by combining like terms.

a.
$$2x^2 + 5x - 4x^2 + x - x^2$$

b.
$$-2(r+s)-(2r+2s)$$

1-3 Algebraic Expressions

4 Finding Perimeter Find the perimeter of this figure. Simplify the answer.

Quick Check

4. Find the perimeter of each figure. Simplify the answer.

Simplify by combining like terms.

1.
$$6x + x$$

2.
$$11t + 3t - 5$$

3.
$$-6a - 5a + b - 1$$

- **13.** The expression $6s^2$ represents the surface area of a cube with edges of length s. Find the surface area of a cube with each edge length.
 - **a.** 3 inches

b. 1.5 meters